The refocused INADEQUATE MAS NMR experiment in multiple spin-systems: Interpreting observed correlation peaks and optimising lineshapes

Sylvian Cadars a,1, Julien Sein a, Luminita Duma a,2, Anne Lesage a, Tran N. Pham b,3, Jay H. Baltisberger c, Steven P. Brown b, Lyndon Emsley a,*

a Laboratoire de Chimie (UMR 5182 CNRS/ENS Lyon), Ecole Normale Superieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
b Department of Physics, University of Warwick, Coventry CV4 7AL, UK
c Department of Chemistry, Berea College, Berea, KY 40404, USA

Received 3 April 2007
Available online 6 June 2007

Abstract

The robustness of the refocused INADEQUATE MAS NMR pulse sequence for probing through-bond connectivities has been demonstrated in a large range of solid-state applications. This pulse sequence nevertheless suffers from artifacts when applied to multispin systems, e.g. uniformly labeled 13C solids, which distort the lineshapes and can potentially result in misleading correlation peaks. In this paper, we present a detailed account that combines product-operator analysis, numerical simulations and experiments of the behavior of a three-spin system during the refocused INADEQUATE pulse sequence. The origin of undesired anti-phase contributions to the spectral lineshapes are described, and we show that they do not interfere with the observation of long-range correlations (e.g. two-bond 13C–13C correlations). The suppression of undesired contributions to the refocused INADEQUATE spectra is shown to require the removal of zero-quantum coherences within a z-filter. A method is proposed to eliminate zero-quantum coherences through dephasing by heteronuclear dipolar couplings, which leads to pure in-phase spectra.

Keywords: Solid-state NMR; Zero-quantum coherences; z-filter; Multispin systems; INADEQUATE; Solid-state; Magic angle spinning; Scalar coupling; Through-bond spectroscopy

1. Introduction

Through-bond mediated homonuclear experiments, which have been one of the cornerstones of solution-state NMR for several decades have recently been increasingly utilized in solid-state NMR. Their advantage is to provide the unambiguous identification of through-bond chemical connectivities, as compared to dipolar-coupling mediated experiments that cannot distinguish between bonding and non-bonding through-space proximities. They rely on the use of the isotropic scalar (J) coupling interaction which is generally weak as compared to dipolar couplings. Two distinct classes of J-coupling mediated experiments have been introduced. On the one hand, symmetry-based pulse sequences, such as the total through-bond spectroscopy (TOBSY)4

© 2007 Elsevier Inc. All rights reserved.

Keywords: Solid-state NMR; Zero-quantum coherences; z-filter; Multispin systems; INADEQUATE; Solid-state; Magic angle spinning; Scalar coupling; Through-bond spectroscopy

1090-7807/S - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmr.2007.05.016

Abbreviations: TOBSY, total through-bond spectroscopy; INADEQUATE, incredible natural abundance double quantum transfer experiment; CR, composite refocusing; UC2QF COSY, uniform-sign cross-peak double quantum filtered correlation spectroscopy; TQ, triple-quantum; DD, dipole-dipole; CSA, chemical shift anisotropy, DQ, double quantum; ZQ, zero-quantum; CP, cross polarization; PDS, proton-driven spin diffusion.
experiment, use the spin-space symmetry properties of the different interactions to remove the undesired chemical shift anisotropy (CSA) and dipolar interactions, thus leaving only the homonuclear J-couplings [1–5]. Although these are rather complicated pulse sequences, most of which require the use of specific magic angle spinning (MAS) frequencies, they have been widely applied to enriched multispin systems. On the other hand, other methods have been adapted from solution NMR, which use coherence-transfer echoes [6] to transfer the magnetization between scalar-coupled nuclei. In addition to their simplicity they have the great advantage of allowing the connectivity patterns along a given spin system to be traced out (as opposed to TOBYS-type spectra where all the sites of a given spin system appear correlated to each other, i.e. in a linear A–B–C spin system with $J_{AC} = 0$, A and C would appear correlated). These include the solid-state INADEQUATE [7,8] and INADEQUATE-CR [9], the refocused INADEQUATE [10], the UC2QF-COSY [11–13], spin-state selective experiments [14], and the recently introduced J-mediated triple-quantum (TQ) experiment [15]. In this paper, we focus on the refocused INADEQUATE experiment, whose robustness has been repeatedly demonstrated in a wide range of 13C-enriched [16–20] or 15N-enriched [21,22] and 13C natural abundance [23–28] polycrystalline organic systems, as well as in disordered [29–31] organic systems and in crystalline and disordered inorganic solids [32–36].

Despite its success, the refocused INADEQUATE experiment may suffer from some artifacts in certain cases. In particular, it has been shown that peaks corresponding to through-space connectivities can appear at or close to rotational resonance conditions, in particular for the $n = 0$ rotational resonance (i.e. two sites having the same isotropic chemical shift), in the case where two nuclei with a non-vanishing through-space DD coupling have CSA tensors with different principal values or orientations [35].

This paper considers the lineshape distortions and unexpected correlation peaks that are observed when the refocused INADEQUATE experiment is applied to samples which consist of spin systems that extend beyond simple spin pairs, as is the case in high abundance (31P) or isotopically enriched (13C, 15N) systems, with a consideration here of the specific case of uniformly 13C-labeled polycrystalline l-alanine. A detailed analysis using the standard product-operator approach commonly employed for solution-state experiments is presented, whose validity is discussed by means of comparison with experiments and numerical simulations. The improvements achieved by the addition of a z-filter are discussed; in particular, it is shown that the crucial issue to tackle is the removal of contributions due to zero-quantum (ZQ) coherences. Strategies for removing such ZQ coherences by means of solution-state-NMR based approaches, as well as methods utilizing specific solid-state interactions, are considered.

2. Nature and origin of the undesired contributions

The pulse sequence for the refocused INADEQUATE experiment using cross polarization to create the initial transverse magnetization is shown in Fig. 1(a), together with the corresponding X (e.g., 13C) nucleus coherence-transfer pathway [37] to be selected using phase cycling. The pulse sequence can be explained using a product-operator [38] description of the density matrix evolution on a system of two J-coupled spins A and B. Of course, such a solution-state-based analysis is only valid in a limited number of regimes where the effect of solid-state anisotropic interactions can be neglected: namely, in the case that all rotational resonance conditions are avoided, and the spinning frequency is sufficiently large that the homonuclear dipolar couplings between the detected nuclei and CSA interactions are completely averaged out over an integral number of rotor periods. Moreover, the strong heteronuclear dipolar couplings to the dense network of protons are assumed to be entirely removed by efficient heteronuclear decoupling. Furthermore, the product-operator formalism assumes, first, ideal (infinitely short) pulses and, second, homonuclear J-couplings that are small as compared to the isotropic chemical shift differences [38].

After cross polarization (CP) from protons to the X spins, we consider the initial density matrix $\sigma(0) = -M_0^A A_1 - M_0^B B_0$, where M_0^A and M_0^B correspond to the magnitude of the transverse magnetization created by CP on spins A and B, respectively. A first $\tau – \pi – \tau$ spin echo generates anti-phase coherences through J-coupling evolution, with best theoretical efficiency for a spin-echo delay $\tau = 1/(4|J_{AB}|)$, ignoring transverse dephasing.

$$\sigma(0) \xrightarrow{\tau,\pi,\tau} M_0^A A_1 c_{AB} + 2A_0B_2 s_{AB} + M_0^B (B_1 c_{AB} + 2A_0B_1 s_{AB})$$

(1)

where $c_{AB} = \cos(2\pi J_{AB} \tau)$ and $s_{AB} = \sin(2\pi J_{AB} \tau)$. The anti-phase coherences are then converted to a mixture of double-quantum (DQ) and zero-quantum (ZQ) coherences between J-coupled nuclei by the first 90° pulse.

$$\xrightarrow{\pi/2} M_0^A (A_1 c_{AB} - 2A_0 B_2 s_{AB}) + M_0^B (B_1 c_{AB} - 2A_0 B_1 s_{AB})$$

(2)

Terms of coherence order 0 in t_1 are removed by appropriate phase cycling of the first 90° and the first 180° pulse to select DQ coherence, which yields a loss in overall efficiency of 50%.5

$$\overset{\text{DQ selection}}{\xrightarrow{\pi/2}} \frac{M_0^A}{2} s_{AB} (2A_0 B_2 + 2A_1 B_3) - \frac{M_0^B}{2} s_{AB} (2A_0 B_3 + 2A_1 B_2)$$

(3)

5 Terms of the form $2A_0 B_2$ are first expressed as combinations of A^+, A^-, B^+, B^-, and C^+. Then contributions of coherence order 0 ($A^+ B^-, A^- B^+$) are removed while those of coherence order 2 ($A^+ B^-, A^- B^-$) remain. Finally, the remaining terms are expressed again as combinations of A_1, A_2, B_0, and B_1.

The experiment was carried out at 125.8 MHz 13C Larmor frequency, spinning at 25 kHz, using a direct X chemical shifts. The remaining DQ coherences evolve under the sum of the refocused INADEQUATE experiment, which provides homonuclear through-bond correlation spectra in solids, as proposed by Lesage and co-workers [10]. (b) 13C refocused INADEQUATE 2D spectrum of fully 13C-enriched L-alanine, obtained with the pulse sequence shown in (a). Contour levels correspond to ±1, ±2.1, ±4.1, ±6.1 and ±8.1% of the maximum intensity, positive contours being indicated in blue and negative contours in red. (c) Traces extracted from the 2D refocused INADEQUATE spectrum shown in (b). The rows, from top to bottom, respectively, correspond to the double-quantum frequency of the CH–CH3, CO–CH3 and CO–CH correlations, while the columns correspond to the CO, CH and CH3 resonances in F2, respectively. The experiment was carried out at 125.8 MHz 13C Larmor frequency, spinning at 25 kHz, using a τ delay of 3 ms. No apodization was applied in the direct F2 dimension. The vertical scaling, if any, applied to a given sub-spectrum is indicated on the figure.

The remaining DQ coherences evolve under the sum of the chemical shifts $\Omega_{AB} = \omega_A + \omega_B$ during the indirect period, and are then converted back to anti-phase coherences. Only contributions obtained for $t_1 = 0$ are considered here for simplicity:

$$\frac{(\pi/2)_1}{2} - \frac{M_0}{2} s_{AB} (2A_x B_x + 2A_y B_y) - \frac{M_0}{2} s_{AB} (2A_x B_x + 2A_y B_y)$$

(4)

The second spin echo achieves the transformation of the anti-phase coherences (complete only for $\tau = 1/(4J_{AB})$) into in-phase coherence for detection:

$$\frac{\tau - \pi}{2} - \frac{M_0}{2} (2A_x B_x s_{AB} + A_y s_{AB}^2 + 2A_x B_x s_{AB} + B_x s_{AB}^2)$$
$$+ \frac{M_0}{2} (2A_x B_x s_{AB} + A_y s_{AB}^2 + 2A_x B_x s_{AB} + B_x s_{AB}^2)$$

(5)

For $\tau = 1/(4J_{AB})$, $c_{AB} = 0$ and $s_{AB} = 1$, and the anti-phase contributions vanish.

$$\sigma(t_2) = \frac{M_0}{2} (A_y + B_y) + \frac{M_0}{2} (A_y + B_y)$$

(6)

When applied to an isolated J-coupled spin pair, the refocused INADEQUATE experiment (for $\tau = 1/(4J_{AB})$) thus yields a pair of in-phase correlation peaks at the same DQ frequency ($\Omega_{AB} = \omega_A + \omega_B$) in the indirect dimension, at the sum of their individual frequencies.

We now turn our attention to three-spin systems. Fig. 1(b) shows the contour plot of a refocused INADEQUATE spectrum recorded for 99% 13C-enriched L-alanine. At first sight we see that, as expected, the major features are intense peaks observed at ($\Omega\text{DQ(CH–CH3)}$, $\omega(\text{CH})$), ($\Omega\text{DQ(CH–CH3)}$, $\omega(\text{CH})$), ($\Omega\text{DQ(CO–CH)}$, $\omega(\text{CO})$), and ($\Omega\text{DQ(CO–CH)}$, $\omega(\text{CH})$), that correspond to the expected cross peaks for the one-bond connectivities in this system. Upon close inspection, it is, however, evident that these peaks exhibit marked lineshape distortions, being not purely in-phase, as illustrated in Fig. 1(c) by the traces extracted at three DQ frequencies corresponding to the CH–CH3 (72 ppm, top), the CO–CH3 (199 ppm, middle) and CO–CH (228 ppm, bottom) pairs. Moreover, an intense negative peak is observed at ($\Omega\text{DQ(CO–CH3)}$, $\omega(\text{CH})$); as discussed further below, this is an example of a so-called “relayed peak” between two non-bonded nuclei that share a common coupling partner [39], whose appearance has been noted by Titman and co-workers in a 13C refocused INADEQUATE spectrum of 50% 13C-enriched CsC60 (see Fig. 5 of Ref. [16]). Finally, non-negligible though weak peaks which appear to be largely anti-phase are also observed at other positions in the spectrum; in particular at ($\Omega\text{DQ(CO–CH3)}$, $\omega(\text{CO})$) and ($\Omega\text{DQ(CO–CH3)}$, $\omega(\text{CH})$), corresponding to the expected positions of long-range correlations between CO and CH3 through the associated two-bond J-coupling. An important issue is to determine whether these peaks are due to such a small long-range 13CO–13CH3 coupling or arise from undesired contributions to the spectrum, in which case they could lead to erroneous interpretation.
In order to determine the different possible contributions to the refocused INADEQUATE spectrum, a complete product-operator calculation of the density matrix evolution during the pulse sequence has been carried out on a three-spin system. Again, this approach is only valid for the conditions described above. In the following, a system of three-spins-1/2 \(A, B, C \) will be considered, which can either be treated as a weakly-coupled linear system, with \(J_{AB} \neq 0 \) Hz, \(J_{BC} = 0 \) Hz and \(J_{AC} = 0 \) Hz, or as a weakly-coupled triangular system having a non-zero \(J_{AC} \) coupling constant. The notation used here is different from the one commonly used in liquid-state NMR, where \(A, B \) and \(C \) would refer to strongly-coupled spins, and where \(A, M \) and \(X \) would be used instead to refer to a system of weakly-coupled spins. As was the case above for two coupled spins, the letter \(M^0 \) designates the magnetization (here created after CP).

Table 1 lists the terms expected (in regimes fulfilling the conditions stated above) at the beginning of the direct detection period for the first point of the 2D refocused INADEQUATE spectrum, i.e. at \(t_1 = 0 \) for \(t_1 = 0 \). They were obtained by applying the following sequence to the reduced initial density matrix \(\sigma_0^t = -M^0_{t_1}A_x \), where \(M^0_{t_1} \) corresponds to the magnitude of the transverse magnetization created by CP:

\[
\tau - \pi_x - \tau - (\pi/2)_y - t_1 - (\pi/2)_y - \tau - \pi_x - \tau
\]

(7)

Table 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Build-up function</th>
<th>(F_1) frequency</th>
<th>(F_2) frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, M^0_{t_1}/2)</td>
<td>(s_{AB}^2 s_{AC}^2)</td>
<td>(\Omega_{AB})</td>
<td>(\omega_A)</td>
</tr>
<tr>
<td>(B, M^0_{t_1}/2)</td>
<td>(s_{AB} s_{AC})</td>
<td>(\Omega_{BC})</td>
<td>(\omega_B)</td>
</tr>
<tr>
<td>(C, M^0_{t_1}/2)</td>
<td>(s_{AC}^2)</td>
<td>(\Omega_{AC})</td>
<td>(\omega_C)</td>
</tr>
<tr>
<td>(2A, B, M^0_{t_1}/2)</td>
<td>(s_{AB} s_{AC} s_{BC})</td>
<td>(\Omega_{AB})</td>
<td>(\omega_B)</td>
</tr>
<tr>
<td>(2A, C, M^0_{t_1}/2)</td>
<td>(s_{AB} s_{AC} s_{AC})</td>
<td>(\Omega_{AC})</td>
<td>(\omega_C)</td>
</tr>
<tr>
<td>(2B, C, M^0_{t_1}/2)</td>
<td>(s_{AC} s_{BC})</td>
<td>(\Omega_{BC})</td>
<td>(\omega_C)</td>
</tr>
<tr>
<td>(2A, C, M^0_{t_1}/2)</td>
<td>(s_{AB} s_{AC} s_{AC})</td>
<td>(\Omega_{AC})</td>
<td>(\omega_B)</td>
</tr>
<tr>
<td>(2B, C, M^0_{t_1}/2)</td>
<td>(s_{AC} s_{BC})</td>
<td>(\Omega_{BC})</td>
<td>(\omega_B)</td>
</tr>
<tr>
<td>(4A, B, C, M^0_{t_1}/2)</td>
<td>(s_{AB} s_{AC} s_{AC})</td>
<td>(\Omega_{AB})</td>
<td>(\omega_B)</td>
</tr>
<tr>
<td>(4A, B, C, M^0_{t_1}/2)</td>
<td>(s_{AB} s_{AC} s_{AC})</td>
<td>(\Omega_{AC})</td>
<td>(\omega_C)</td>
</tr>
</tbody>
</table>

\(\times \) indicates terms that would vanish for a simple linear spin system \(J_{AC} = 0 \) Hz. \(s_{KL} \) and \(e_{KL} \) are, respectively, equal to \(\sin(2\pi J_{KL} t) \) and \(\cos(2\pi J_{KL} t) \). \(M^0_{t_1} \) represents the initial magnetization (after CP) on \(A \).

Fig. 2. Schematic INADEQUATE spectra of (a) a linear three-spin system, and (b) a triangular spin system with \(J_{AC} \) corresponding to a two-bond long-range coupling. The expected direct one-bond cross peak positions are indicated as filled black circles and the negative so-called relayed peaks are shown as crossed circles. In (a), the potential positions of undesired peaks that may be observed using the refocused INADEQUATE spectrum in multispin systems are indicated as open circles. In (b) black squares indicate the expected position of the long-range \(A-C \) correlation due to \(J_{AC} \).
tional low-intensity relayed peaks are expected at \((\Omega_{AB}, \omega_C)\) and \((\Omega_{BC}, \omega_A)\), as shown by the crossed circles in Fig. 2(b). It is clear from Table 1 that only a limited set of terms are responsible for the desired in-phase contributions to the spectrum, namely the \(A_s, B_s,\) and \(C_s\) coherences, whose positions correspond to the filled and crossed circles in Fig. 2, while all other terms correspond to anti-phase contributions that are spread to different possible positions in the spectrum (including the position of the expected peaks) and should ideally be eliminated.

It is important to note that the amplitudes of these in-phase and anti-phase terms are in principle comparable, so they can make significant contributions to the spectrum. However, it is known from solution-state NMR that the anti-phase terms will be strongly attenuated with increasing linewidth, and thus one may conclude that in solids the contribution is minor. Indeed, in some cases they will not cause an observable effect. This effect is only noticeable in systems with effective correlation linewidths [29,30] (i.e. inhomogeneously broadened 1D NMR peaks may in favorable cases yield elongated correlation peaks of remarkably narrow cross section in 2D NMR spectra) comparable to or smaller than the J-couplings. In reality, with modern decoupling techniques, this is the case in most solids, whether they are small molecule ordered crystals, proteins, or even many disordered solids [29,30,40]. The lineshape distortions discussed here are thus likely to be encountered in most solid-state correlation spectra.

One of our principal aims is to determine whether undesired peaks can appear at the position of long-range correlations \((\Omega_{AC}, \omega_A)\) and \((\Omega_{BC}, \omega_C)\) when \(J_{AC} = 0\) Hz, and lead to erroneous interpretation. No such terms can be seen in Table 1. However, they might potentially arise from the other parts of the initial density matrix, namely \(\sigma_0^B = -M_0^B B_s\) and \(\sigma_0^C = -M_0^C C_s\). The cyclic permutation \(A \rightarrow B \rightarrow C \rightarrow A\) applied to the terms at \((\Omega_{BC}, \omega_B)\) and \((\Omega_{BC}, \omega_C)\) in Table 1 would give a contribution from \(\sigma_0^B\) to \(A-C\) correlations, but, again, there are no such terms in Table 1. Finally, the contributions from \(\sigma_0^A\) to \(A-C\) correlations are obtained by applying the cyclic permutation \(A \rightarrow C \rightarrow B \rightarrow A\) to the terms at \((\Omega_{AB}, \omega_A)\) and \((\Omega_{AB}, \omega_B)\).

These are as follows:

\[
\frac{C_s M_0^B}{2} s_{AC}^2 s_{BC}^2 + \frac{2 C_s A_s M_0}{2} s_{AC} s_{AC} s_{BC}^2
\]

\[
- \frac{2 B_s C_s M_0}{2} s_{AC} s_{BC} s_{BC} + \frac{4 A_s B_s C_s M_0}{2} s_{AC} s_{AC} s_{AC} s_{BC} s_{BC}
\]

for the contribution from \(\sigma_0^B\) at \((\Omega_{AC}, \omega_C)\), and:

\[
\frac{A_s M_0}{2} c_{AB} s_{AC}^2 s_{BC} + \frac{2 A_s C_s M_0}{2} c_{AB} s_{AC} s_{AC} s_{BC}
\]

\[
- \frac{2 A_s B_s M_0}{2} s_{AB} s_{AC}^2 s_{BC} + \frac{4 A_s B_s C_s M_0}{2} s_{AB} s_{AC} s_{AC} s_{BC} s_{BC}
\]

for the contribution from \(\sigma_0^C\) at \((\Omega_{AC}, \omega_A)\). All of these terms contain \(s_{AC} = \sin(2\pi J_{AC} t)\) or \(s_{AC} = \sin^2(2\pi J_{AC} t)\), and thus vanish for \(J_{AC} = 0\) Hz, which means that, for \(t_1 = 0\), no other contribution than those due to the \(J_{AC}\) coupling can appear at the expected positions of the long-range \(A-C\) correlations (black squares in Fig. 2(b)). Similarly, it can be shown that the DQ evolution period \(t_1\) would not result in the creation of additional anti-phase peaks at \((\Omega_{AC}, \omega_A)\) and \((\Omega_{AC}, \omega_C)\) for \(J_{AC} = 0\) Hz. Thus, even if anti-phase contributions are not removed, the refocused INADEQUATE should provide unambiguous identification of long-range (e.g. two-bond\(^{13}C-^{13}C\)) correlations.

The small peaks observed in Fig. 1(c) at \((\Omega_{AC}, \omega_A)\) and \((\Omega_{AC}, \omega_C)\) are thus likely due to a non-negligible \(J_{AC}\) coupling. A 1D spectrum (not shown) of uniformly \(^{13}C\)-enriched l-alanine in solution was recorded which showed a \(2^J(^{13}C-^{13}C)\) coupling of \(1.3 \pm 0.1\) Hz. Although this value is small (compared to ~35 Hz for \(1^J(^{13}C-^{13}C)\)), a \(J_{AC}\) coupling in the solid-state on the order of 2 Hz can potentially lead to long-range peaks of the order of \(1\%\) of the intensity of the one-bond direct correlations, as observed here.

Table 2 then shows the complete build-up functions for the desired in-phase terms in a triangular spin system \((J_{AC} \neq 0\) Hz), obtained for \(t_1 = 0\), by considering the complete initial density matrix \(\sigma_0 = -M_0^A A_s - M_0^B B_s - M_0^C C_s\), with \(M_0^A, M_0^B, \) and \(M_0^C\) being potentially different, as they depend on the CP efficiency in solids. This corresponds to the build-up functions expected in ideal conditions of complete removal of the undesired anti-phase contributions. The contributions corresponding to the positions indicated by black circles and squares in Fig. 2(b) are clearly identified, as well as the negative relayed peaks at \((\Omega_{AC}, \omega_B)\), \((\Omega_{AB}, \omega_C)\) and \((\Omega_{BC}, \omega_A)\).

Table 2

<table>
<thead>
<tr>
<th>Position in the 2D spectrum</th>
<th>Build-up function</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Omega_{AB}, \omega_A))</td>
<td>(\frac{M_0^A}{2} c_{AB} s_{AC}^2 s_{BC} + \frac{M_0^C}{2} c_{AB} s_{AC} s_{AC} s_{BC}) (A-B) (A-B) correlation</td>
<td>(A-B) (A-B) correlation</td>
</tr>
<tr>
<td>((\Omega_{AB}, \omega_B))</td>
<td>(\frac{M_0^A}{2} c_{AB} s_{AC}^2 s_{BC} + \frac{M_0^C}{2} c_{AB} s_{AC} s_{AC} s_{BC}) (A-B) (A-B) correlation</td>
<td>(A-B) through (C) (A-C) correlation</td>
</tr>
<tr>
<td>((\Omega_{AB}, \omega_C))</td>
<td>(-\frac{M_0^A}{2} c_{AB} s_{AC}^2 s_{BC}) (A-C) (A-C) correlation</td>
<td>(A-C) through (B) (A-C) correlation</td>
</tr>
<tr>
<td>((\Omega_{BC}, \omega_A))</td>
<td>(-\frac{M_0^B}{2} c_{AB} s_{AC}^2 s_{BC}) (A-C) (A-C) correlation</td>
<td>(B-C) through (A) (B-C) correlation</td>
</tr>
<tr>
<td>((\Omega_{BC}, \omega_B))</td>
<td>(-\frac{M_0^B}{2} c_{AB} s_{AC}^2 s_{BC}) (B-C) (B-C) correlation</td>
<td>(B-C) correlation</td>
</tr>
<tr>
<td>((\Omega_{BC}, \omega_C))</td>
<td>(-\frac{M_0^B}{2} c_{AB} s_{AC}^2 s_{BC}) (B-C) (B-C) correlation</td>
<td>(B-C) correlation</td>
</tr>
</tbody>
</table>

\(s_{KL}\) and \(c_{KL}\) are, respectively, equal to \(\sin(2\pi J_{KL} t)\) and \(\cos(2\pi J_{KL} t)\). \(M_0^A, M_0^B,\) and \(M_0^C\) represent the initial magnetization (after CP) on \(A, B,\) and \(C,\) respectively.
In conclusion we find that additional terms in three-spin systems lead to lineshape distortions and relayed peaks. They do not lead to the appearance of peaks between uncoupled spins. In the following, several techniques are proposed that provide at least partial removal of the undesired anti-phase and dispersive contributions to the re-focused INADEQUATE spectrum, thus tending towards the ideal case whose behavior is summarized in Table 2.

3. z-filters and zero-quantum contributions

In solution-state NMR, a z-filter is commonly employed to improve phase-distorted lineshapes [41]. In the solid-state, Mueller and co-workers have presented UC2QF-COSY [13] and constant-time UC2QF-COSY [14] spectra employing a z-filter, while z-filtered refocused INADEQUATE spectra have also been recently presented [22,31,42]. This section shows that an appropriate z-filter leads to reduction, but not complete removal, of anti-phase contributions to the lineshapes in multispin systems.

To observe only purely in-phase lineshapes, it is necessary to remove the anti-phase terms (compare Tables 1 and 2), while retaining the desired A\textsubscript{x}, B\textsubscript{y}, and C\textsubscript{z} coherences. Consider the effect of a 90° pulse around the x-axis: this would flip the latter terms onto the z-axis while converting the anti-phase contributions to a mixture of DQ and zero-quantum (ZQ) terms such as, for example:

\[2A_x B_y 90_z \rightarrow -2A_x B_y = (1/2i)(A^* B - A^* B^+ + A^* B^+ - A^* B^*) \]

(10)

and

\[4A_x B_y C_z 90_z 4A_x B_y C_y = -A_x (B^+ C - B^+ C^- - B^+ C^- - B^- C^+) \]

(11)

Fig. 3 shows the pulse sequence and coherence-transfer pathway diagram for a z-filtered refocused (zfr-) INADEQUATE experiment. Phase cycling is required to ensure the desired selection of coherence order zero (corresponding also to population states, e.g. A\textsubscript{z}) between the two 90° pulses of the z-filter. Specifically, and as suggested in particular in Refs. [43] and [44] for liquid-state NMR INADEQUATE and refocused INADEQUATE experiments, four-step phase-cycling of the final 90° pulse (consisting of \(\phi = 0, 90, 180, 270^\circ \)) is required to remove contributions of coherence order \(\pm 2 \), and thus eliminates half the intensity of the undesired contributions listed in Table 1, which, as described in Eqs. (10) and (11), are converted to a mixture of DQ and ZQ coherences by the first 90° pulse of the z-filter. It was verified experimentally on fully 13C-enriched l-alanine (data not shown), that a two-step phase cycle consisting of \(\phi = 0, 180^\circ \) and \(\phi_{\text{receiver}} = 0, 0^\circ \) for a z-filter of zero duration had no effect on the spectrum, since such a phase cycle also allows DQ coherences to pass through.

Fig. 4(a) shows extracted traces from the zfr-INADEQUATE spectrum of 99% 13C-enriched l-alanine, with a four-step phase-cycled z-filter of null duration, otherwise recorded under identical conditions as the one in Fig. 1(b). The comparison between the traces in Fig. 4(a) and in Fig. 1(c) shows a clear reduction but not complete removal of the anti-phase contributions to the intense correlation peaks, namely those corresponding to the directly bonded pairs (solid circles in Fig. 2(a)), and the remote peak (crossed circle in Fig. 2(a)).

Additionally, peaks at other positions of the spectrum show anti-phase peaks of higher intensity than in Fig. 1(c). This is presumably due to the removal of some contributions that cancel out with others in Fig. 1(c). In any case, these peaks remain small. Most importantly, this shows that a four-step-cycled z-filter of zero duration alone is not sufficient to completely remove the undesired contributions. Indeed, it is known from the discussion above that the four-step phase-cycling removes the DQ coherences, but not the ZQ coherences, which are thus converted back into dispersive anti-phase coherences of the form \(A_x B_z, B_z C_z, \ldots \). Within the framework of the product-operator analysis, the ZQ coherences are therefore the only remaining contribution that must be eliminated during the z-filter.

Numerical simulations of the z-filtered refocused INADEQUATE experiment have been carried out using the SIMPSON program [45] on a system including all the anisotropic interactions in order to confirm the nature of the undesired contributions to the experimental spectra, and to validate the above analysis based on product-operator formalism. A linear three-spin system was considered, whose parameters reproduce the intra-molecular carbon spin system of l-alanine, the \(^2J(13\text{CO}-13\text{CH}_3) \) coupling being set to 0 Hz, (see Section 6 for further details). The 13C Larmor frequency was set to 125.72 MHz (corresponding to a static magnetic field of 11.74 T), with the MAS frequency set equal to 25 kHz to match the experimental conditions. In the following, \(A, B, \) and \(C \) designate the 13CO, 13CH, and 13CH\textsubscript{3} carbon spins of l-alanine in the simulation.

Fig. 5(a) shows the 1D build-up of the spin B \((^{13}\text{CH}) \) resonance as a function of the \(\tau \) spin-echo delay, for a
z-filter of null τ_z duration during which only density-matrix elements corresponding to coherence order 0 are selected, which corresponds to the experimental case of a four-step phase-cycled z-filter where both population states and ZQ coherences pass through. Anti-phase contributions are clearly visible, illustrating the incomplete removal of the undesired terms. For comparison, Fig. 5(b) presents the results of identical simulations, except that only density-matrix elements corresponding to populations (A_z, B_z, or C_z terms) are allowed during the z-filter. The pure in-phase absorptive shape of the resulting lines shows that the undesired anti-phase components arise exclusively from the ZQ order terms of the form $A^+B^- (and A^+B^+ C^-)$ during the z-filter. It should be noted that the build-up is a sum of the evolution as a function of τ for three distinct peaks in the 2D spectrum, namely peaks at Ω_{AB}, Ω_{BC}, and Ω_{AC} in the indirect dimension, and ω_{Bz} in the direct dimension. The best fit shown as a dotted line in Fig. 5(b), using the appropriate build-up curves of Table 2 with
\[M_B^0 = M_B^0 = M_C^0 \] and \(J_{AB} = 0 \) Hz, yields fitted \(J_{AB} \) and \(J_{BC} \) coupling values in excellent agreement (within 0.2%) with the 34.0 and 54.0 Hz values used for the simulation, which validates the solution-state product-operator analysis presented above.

In Fig. 5(c), where only coherences \(A^+C^- \) and \(A^-C^+ \) have been selected, for \(\tau = 5 \) ms, we observe pure anti-phase lineshapes whatever the length of the \(z \)-filter \(\tau_Z \) is, and the same is true for other types of ZQ term \((A^+B^-,A^-B^+,B^+C^-, \) or \(B^-C^+) \) being selected during the \(z \)-filter (data not shown). This proves that all the desired contributions have the form of populations during the \(z \)-filter, as expected from the product-operator analysis, and additionally confirms that the issue to be tackled here is the suppression of ZQ contributions. This is furthermore supported in Fig. 5(c) by the evolution as a function of \(\tau_Z \) of the signal of spin \(B \), which shows the expected modulation at the frequency difference \(|\omega_A - \omega_C| \) between \(A \) and \(C \) resonances (ca. 19.7 kHz at 11.74 T).

4. Removing zero-quantum coherences

First, it should be noted that the removal of such undesired contributions from 2D NMR spectra is not a recent issue. In a key paper published in 1981, Macura et al. [46] have shown that undesired \(J \)-cross peaks observed in 2D exchange and/or NOE spectra in solution were arising from single, double and zero-quantum coherences created before the mixing time through \(J \)-coupling evolution. First, they proposed to remove single and double-quantum coherences by phase cycling (or by using pulsed field gradients). As illustrated in the previous subsection, this turns out also to work well in powdered solids under fast MAS conditions. Second, since ZQ coherences are insensitive to phase shifts as well as to magnetic field inhomogeneity, several approaches were proposed to remove them, which are reviewed below, together with alternative methods that have been proposed more recently.

As mentioned above, the use of efficient decoupling techniques and fast MAS in high-resolution spin-1/2 NMR of powdered crystalline solids provides narrow lines, in which anti-phase contributions can be problematic. Even in disordered solids, it has been shown that narrow lines could be observed in 2D refocused INADEQUATE spectra in some cases [29] suggesting that recording purely in-phase spectra may also become an issue in that case. Under such conditions, we expect ZQ coherences to have a near-solution-state behavior, and the application of methods to remove ZQ coherences in solution is therefore briefly reviewed.

The first method to remove ZQ coherences in solution, proposed by Macura et al. [46] consists of the use of random variations of the \(z \)-filter length (or mixing time in the context of Ref. [46]), during which ZQ coherences evolve while \(z \)-magnetization is kept unchanged. If the overall duration sampled by these variable delays is longer than half of the longest period of the ZQ coherences \(i.e. \) the inverse of the smallest chemical shift difference between two spins of a given spin system; \(i.e. \sqrt{\omega(CH_3) - \omega(CH)} \) in \(\alpha \)-alanine), the summation of a sufficiently large number of experiments will result in the cancellation of the undesired terms by destructive interference. This method has the disadvantage of requiring a dramatic increase of the experimental time. However, this can be avoided by randomly varying the \(z \)-filter duration and simultaneously incrementing \(t_1 \), which however results in so-called \(t_1 \) noise in the indirect dimension [46]. The second method proposed in Ref. [46] introduces a 180° pulse inside the \(z \)-filter whose position changes from one experiment to another. This results in a variable evolution period of the ZQ coherences (since a variable part of their evolution is refocused), while keeping the overall duration of the filter constant, population states being not affected (only inverted) by the 180° pulse. This method is of particular interest in cases where the filter period is used as a mixing time, whose overall duration should remain constant. Several variants of this method have since been introduced, such as an optimized set of evolution delays instead of random durations [47] and recently, a novel variant was proposed in which the desired cancellation can be obtained in a single transient [48]. By means of a field gradient, the Larmor frequencies are made space-dependent, and a swept-frequency 180° pulse therefore refocuses the spins at different positions in the sample at different times. Finally, other methods were proposed, some of which are quite efficient and easy to implement, such that their application to obtain pure in-phase absorptive spectra in multispin solids under MAS could be envisaged [49–54].

In solid-state NMR, alternative approaches can be proposed to overcome the problem of ZQ coherences that generate undesired anti-phase contributions to the refocused INADEQUATE spectra of multispin systems. In particular, we shall discuss here the effects of the residual heteronuclear couplings that are not completely averaged out by MAS in the absence of heteronuclear decoupling. These heteronuclear dipolar couplings are presumed to have a large contribution to the ZQ-lineshape in solids under MAS, thus leading to dephasing of ZQ coherences. As a consequence, the introduction of strong heteronuclear couplings by switching off the heteronuclear decoupling during the \(z \)-filter is likely to be an efficient way to induce fast dephasing of the undesired contributions.

However, a potential drawback of this method is that proton-driven spin-diffusion [55] (PDS) between carbons that are close in space may then also occur during the \(z \)-filter, since this also depends on the size of the effective heteronuclear dipolar-coupling constant.

We have recently shown that in weakly proton-coupled systems such as partially \(29 \)Si-enriched surfactant-templated layered silicates, \(z \)-filters as long as 50 ms could safely be used at 10 kHz MAS since no \(29 \)Si-\(29 \)Si PDS occurs in this period [56]. Another favorable example has been demonstrated in Ref. [57], where \(z \)-filters of 10 ms have been used during which we showed that no \(31 \)P-\(31 \)P proton-driven spin-diffusion occurred at high spinning
5. Conclusions

A detailed investigation of the widely-used refocused INADEQUATE pulse sequence has been presented for the case of a fully isotopically enriched three-spin system. The approach is based on a solution-state product-operator analysis, which proves to be suitable for solids under fast MAS for the case of 13C-labeled α-alanine. We describe in detail the origin of multispin contributions to the refocused INADEQUATE spectra, which can seriously affect the appearance of lineshapes for the direct one-bond correlations, and lead to additional anti-phase and “relayed” peaks. However, we show that undesired multispin contributions do not in any case interfere with the observation of long-range correlations. Properly cycled z-filters are shown to partially eliminate these contributions. The remaining contributions are identified as zero-quantum coherences, for which solutions achieving their elimination have been proposed in solution-state NMR over the last two decades. We discuss a simple solid-state approach based on the dephasing of zero-quantum coherences by residual heteronuclear couplings in the absence of heteronuclear decoupling, which can be fully satisfactory in weakly proton-coupled systems.

Finally, we note that the considerations here are also applicable to zero-quantum lineshape artifacts that may appear in homonuclear (13C) PDS spectrum, which is useful in protein NMR studies [59–62]. Thus, zero-quantum lineshapes distortions will be absent at longer mixing times due to the dephasing mechanism considered above, but they should be present for short (or zero) mixing times (and could notably affect calibration spectra for quantitative determinations).

6. Experimental and simulation details

6.1. NMR measurements

All the spectra reported in this paper were recorded on a Bruker AVANCE spectrometer operating at 1H and 13C Larmor frequencies of 500.13 and 125.76 MHz, respectively. The 2D refocused and zfr-INADEQUATE spectra were obtained using a 2.5 mm MAS double resonance (13C-1H) probe at a spinning frequency of 25 kHz. The proton 90° pulse was 2.5 µs. Ramped cross-polarization [63] using a contact time of 1.676 ms was used to transfer the magnetization from protons to carbons. SPINAL-64 proton decoupling [64] was applied during evolution and acquisition periods at a RF field of 140 kHz. Carbon 90° and 180° pulse lengths of 3.5 and 7 µs, respectively, were used. Unless otherwise stated, the τ delay was set to 3 ms. Quadrature detection in t_1 was achieved using the TPPI method [65] with 32 transients being co-added for each of the 500 t_1 increments. The total acquisition time
in t_1 and t_2 were 10 and 30 ms, respectively. The recycle delay was 2.5 s.

6.2. Numerical simulations

All simulations results were obtained using the SIMPSON simulation program [45], based on standard numerical techniques [66], for a three-spin system whose parameters correspond to the intra-molecular 13C spin system of fully labeled L-alanine, and were chosen as in Ref. [58]. The powder average was performed using a set of 143 $\{x, y, z\}$ angles generated by the ZCW algorithm [67] and 10 evenly spaced values of the third Euler angle γ. No significant changes in the lineshapes were observed upon further increase of the number of orientations. The static magnetic field was set to 11.74 T (1H Larmor frequency of 500.0 MHz), and a MAS frequency of 25 kHz was used. Hard pulses were taken to be ‘ideal’ pulses (i.e., no evolution occurs during the pulse). The τ delays and the δ-filter durations t_2 were chosen to be multiples of a rotor period. Transverse dephasing was artificially inserted during the processing by using 10-Hz Lorentzian

References

F. Fayon, Personal Communication.

